
Software is everywhere into our daily lives from our

coffee machine, tv, car, phones, planes, healthcare

devices to nearly any equipment we interact with on

a single day.

Organisations depend on software to deliver their

services or goods and carry their business and thus

all the software dependent revenues are under a

permanent and imminent cyber-threat.

As financial incentives are constantly increasing for

hackers, it is to the defender to deter the attacker by

making the cost of the attack superior to the potential

revenues.

In-app protection software such as application

shielding, white-box cryptography and digital vault

functionalities contributes to significantly increase

the cost of an attack to thwart potential attackers.

A SHIELD FOR YOUR SOFTWARE AND A VAULT
FOR YOUR SECRETS

• Protect your revenues by

preventing theft, fraud,

counterfeiting and hacking

• Prevent unauthorised recovery

and disclosure of the source

code

• Prevent unauthorised analysis

of the software internal

functioning

• Prevent theft of passwords,

secrets and keys

• Prevent theft of Intellectual

Property

• Extensive services and support

to facilitate securing your

business

• Seamless integration with

DevOps and Agile software

processes

KEY BENEFITS

A UNIQUE TOOL SUITE TO BRING
SOFTWARE IN COMPLIANCE WITH
BUSINESS RISKS

10, Boulevard Haussmann

75009 Paris France

+33 (0)1 58 30 81 51

contact@quarkslab.com

quarkslab.com

quarkslab.com/blog

Dynamic Protection with Device Trust Assessment
Features

A software might find itself running on unvetted

devices and thus requires the ability to defend itself

using app shielding technologies. Quarks App

Protect integrity technology (i.e. RASP) protects the

application from tampering attempts. Combined

with obfuscation passes, it prevents unauthorised

analysis of the application behaviour or recovering

source code via reverse-engineering techniques.

Security must comply with business needs and

regulatory standards

Security is here to protect business revenues and

enable safe growth. To achieve these goals, Quarks

App Protect has been designed with agility and

versatility, enabling to reach the required security

levels seamlessly and without being an hindrance.

Security officers can design the most appropriate

security configuration and can count on our team

of Subject Matter Experts to support them in

achieving their objectives if needed.

App Protection

• Any combination of 30+ obfuscation

passes for the best security/

performance ratio

• Dynamic Protections: anti-root, anti-

jailbreak, anti-debug, anti-hooking

• Integrity checks coupled with anti-

tampering technologies

• Call-backs to trigger specific actions

on detection of anomalies

• Enable Security Officer to observe

and ensure that the application

complies with security guidelines

KEY FEATURES

We protect your software so you can safely deliver your business value

Quarks App Protect provides best-in-class software and data shielding through obfuscation and

environmental checks to prevent unauthorised parties to attempt gaining insight, tamper with or

even recover the source code from the binary.

• Obfuscations available for C, C++,

Java, Kotlin, specific language on

demand

• RASP available for Linux, Windows,

Android, iOS, OSX

• Architectures: Mobile, Embedded,

desktop (ARM, ARM64, x86, x64)

• Integrations: xCode Visual Studio,

Android Studio

TECHNICAL DETAILS

Best-in-Class Application Shielding

Benefit from the most versatile and top-tier application shielding solution. With the ability to

combine more than 30 obfuscation passes, there is always a way to reach the right balance in

between security and performance.

concealing the keys, but also ensuring a safe usage

to prevent skillful attackers trying to extract keys

through side-channel attacks.

Mandatory solution for all software with encryption

No organisation would be using cryptography

if there wasn’t an asset to protect. If it is deemed

possible that the attacker can gain access to the

device or the software, White-Box Cryptography is

then required to ensure that cryptographic keys are

safe from prying eyes.

Unique white-box implementations

To prevent an attacker from building up insights by

doing the analysis of a series of white-boxes, Quarks

Keys Protect has a unique white-box generation

technology, meaning that implementations are

unique and not shared among customers.

With this design, not even Quarkslab has access to

your keys stored in your generated white-boxes.

Seamless integration

Available as C++ and C software libraries, and in Java

via JNI, Quarks Keys Protect can easily be integrated

into your project through simple API calls.

• Hide your secrets and cryptographic

keys

• Prevent recovery of secret keys

by analyzing the behavior of the

application

• Supports derivation of secret keys

from a master key

• Supports customization of keys in

binaries to generate unique software

out of a generic version

• Individual white-box implementations

per customer/device

KEY FEATURES

The art of hiding secret keys in the plain visible sight of a software binary

White-box cryptography combines methods of encryption and obfuscation to embed secret keys

within application code. The goal is to combine code and keys in such a way that the two are

indistinguishable to an attacker.

• Secure integration of a static key or

wrapping and unwrapping of derived

keys from a master key

• Available algorithms: AES128,

ECDSA (NIST P-256), SHA-1/256/3,

AES-CMAC. ECDSA-SHA-256 (NIST

P-256), other algos on demand

• Architectures: Mobile, Embedded,

desktop (ARM, ARM64, x86, x64)

• C/C++ Library

TECHNICAL DETAILS

Keys Protection

Hide cryptographic keys in software

Any visual inspection of an unprotected software binary containing a cryptographic key will enable

any unskilled attacker to quickly find the key. White-box Cryptography is the art of not only

Unique to each device

The Digital Vault upon its first run builds a fingerprint

of the device and binds itself to the device such

that even if lifted, extracted, from the peripheral, it

cannot be used.

Hardware and Software Security Combined

Quarks Digital Vault automatically detects and

leverage any hardware security such as for

instance, cryptographic functions offered by a

Trusted Execution Environment (TEE). If not available,

it automatically defaults to using software-based

cryptography thus enabling to abstract security and

deliver seamless integration with your application.

Seamless integration

Available as C++ and C software libraries, and thus

in Java via JNI, Quarks Digital Vault can easily be

integrated into your project through simple API calls.

• Unique anti-theft vault thanks to

device binding

• Leverage any hardware-based

capabilities to provide best-in-class

security

• Obfuscated and protected against

reverse engineering

• White-box cryptography security

• Android KeyStore integration

• Based on a solid security paradigm:

decrypt only what you need

KEY FEATURES

Uniform security for all sensitive data

As soon as a software, i.e. a mobile application or IoT object, connects to a remote server it has

to authenticate itself and thus handle credentials and authentication tokens. If these elements lack

the necessary protection mechanisms and are recovered by an attacker, they can be used for an

attack again the overall solution.

• Key-value interface to store

encrypted files, docs and data.

• C/C++ Library available for Android

and Linux

• Architectures: Mobile, Embedded,

desktop (ARM, x86, x64)

• Supporting up to 1024 entries (max

size for each entry: 10MB)

TECHNICAL DETAILS

Quarkslab 2022 - All rights reserved

Digital Vault

Protecting any and all assets

Quarks Digital Vault allows developers to securely store any kind of sensitive data used by an

application from authentication credentials, password, authentication tokens, serial numbers, etc.

